INSTITUT NATIONAL DE LA STATISTIQUE ET DES ÉTUDES ÉCONOMIQUES ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ADMINISTRATION ÉCONOMIQUE CONCOURS POUR L'ADMISSION D'ÉLÈVES TITULAIRES STATISTICIENS ÉCONOMISTES OPTION MATHÉMATIQUES (M')

JUIN 1994

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

Durée: 4 heures

Un corrigé

I. Résultats généraux

1. Notons $A=(a_{i,j})_{1\leq i,j\leq n}$. Il existe une partition (I,J) de $\{1,2,...,n\}$ telle que $a_{ij}=0$ pour tout $(i,j)\in I\times J$ avec $p=\operatorname{card} I$, on a $1\leq p\leq n-1$ et il existe un permutation $\sigma\in\mathscr{S}_n$ telle que $I=\{\sigma(1),...,\sigma(p)\},\ J=\{\sigma(p+1),...,\sigma(n)\}$, ce qui donne :

$$A_{\sigma} = T^{-1}AT = (A_{\sigma(i),\sigma(j)})_{1 \le i,j \le n} = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$$

où
$$B\in \mathscr{M}_p(\mathbf{R}), C\in \mathscr{M}_{n-p,p}(\mathbf{R}), D\in \mathscr{M}_{n-p}(\mathbf{R})$$
 et $T=\left(\delta_{i\sigma(j)}\right)_{1\leq i,j\leq,n}$.

- 2. Si A est réductible, il existe alors une matrice de permutation T telle que $T^{-1}AT$ soit de la forme $\begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$. Notons $(e_1, e_2, ..., e_p, e_{p+1}, ..., e_n)$ la base de \mathbf{R}^n dans laquelle $\mathscr A$ est représenté par la matrice précédente, alors $\mathscr A(e_j) \in \operatorname{Vect}(e_{p+1}, ..., e_n)$ pour tout $j \in \{p+1, ..., n\}$. Le sous-espace $F = \operatorname{Vect}(e_{p+1}, ..., e_n)$ est donc stable par $\mathscr A$.
- 3. Les composantes du vecteur $y = (\mathbf{Id}_n + A)x$ sont données par :

$$y_i = \sum_{j=1}^n a_{ij} x_j + x_i \ (1 \le i \le n).$$

Comme A et le vecteur x sont positifs, on a alors $y_i \ge x_i \ge 0$ et y est positif. Avec $y \ge x$, on déduit que y est strictement positif si x l'est. En supposant que x a au moins une composante nulle, de $0 \le x_i \le y_i$, on déduit que $y_i = 0$ entraı̂ne $x_i = 0$. Le nombre de coordonnées nulles du vecteur y est donc inférieur ou égal à celui de x. Supposons que y et x ont le même nombre de coordonnées nulles. En notant

$$J_x = \{ i \mid 1 \le i \le n \text{ et } x_i = 0 \},$$

on a $y_i>0$ pour $i\notin J_x$ et en conséquence $y_i=x_i=0$ pour tout $i\in J_x$, avec $y_i=\sum_{j\notin J_x}a_{ij}x_j$ et $x_j>0$ pour

 $j \notin J_x$. On a donc en tenant compte du fait que les coefficients a_{ij} sont positifs ou nuls, $a_{ij} = 0$ pour $i \in J_x$ et $j \notin J_x$ avec card $J_x = p$ compris entre 1 et n-1 (x a exactement p composantes nuls) ce qui revient à dire que la matrice A est réductible.

En conclusion le nombre de composantes nulles de y est strictement inférieur à celui de x.

- **4.** D'après la question **3.** ci-dessus, si $y \ge 0$ non nul, alors le vecteur $(\mathbf{Id}_n + A)x$ a au moins deux coordonnées strictement positives.
 - Par récurrence on déduit alors que le vecteur $(\mathbf{Id}_n + A)^{n-1}x$ a au moins n coordonnées strictement positives, ce qui revient à dire qu'il est strictement positif. En appliquant n-1 fois ce résultat à chacun des vecteurs de la base canonique, on constate que toutes les colonnes de $(\mathbf{Id}_n + A)^{n-1}$ ont n coefficients non nuls. Ce qui montre que $(\mathbf{Id}_n + A)^{n-1} > 0$.
- 5. (a) Par division euclidienne de $(1+X)^{n-1}$ par P, il existe des polynômes Q et R tels que $(1+X)^{n-1} = QP + R$ avec $r = \deg R \le m-1$. Comme P(A) = 0 et $(\mathbf{Id}_n + A)^{n-1} > 0$, alors $R(A) = (\mathbf{Id}_n + A)^{n-1} > 0$.

(b) Posons
$$R = \sum_{k=0}^{m-1} \alpha_k X^k$$
. On a donc $R(A) = (\mathbf{Id}_n + A)^{n-1} = \sum_{k=0}^{n-1} \mathbf{C}_{n-1}^k A^k = I_n + \sum_{k=1}^{n-1} \mathbf{C}_{n-1}^k A^k$ et puis pour $(i,j) \in [\![1,n]\!]^2$ avec $i \neq j$,

$$\sum_{k=0}^{m-1} \alpha_q a_{ij}^{(q)} > 0.$$

Comme les $a_{ij}^{(q)}$ sont tous positifs (on a $a_{ij}^{(q)} = \sum_{k=1}^n a_{ik}^{(q-1)} a_{kj}$ et A positive), alors il existe au moins un indice $q \le m-1$ tel que $a_{ij}^{(q)} > 0$.

- (c) De même, $R(A)_{ii} = \sum_{k=0}^{m-1} \alpha_q a_{ii}^{(q)} > 0$ implique qu'il existe $0 \le q \le m-1$ tel que $a_{ii}^{(q)} > 0$.
- (d) Avec $(\mathbf{Id}_n + A)^{m-1} = \sum_{k=0}^{m-1} \mathbb{C}_{m-1}^k A^k = I_n + \sum_{k=1}^{m-1} \mathbb{C}_{m-1}^k A^k$ on déduit que le coefficient d'indice (i,i) de cette matrice est $c_{ii} = 1 + \sum_{k=1}^{m-1} \mathbb{C}_{m-1}^k a_{ii}^{(q)} \ge 1 > 0$ et pour $i \ne j$, du fait qu'il existe q entre 1 et m-1 tel que $a_{ij}^{(q)} > 0$, on a pour le coefficient d'indice (i,j) de $(\mathbf{Id}_n + A)^{m-1}$:

$$c_{ij} = \sum_{k=1}^{m-1} \mathcal{C}_{m-1}^k A^{(k)} \ge \mathcal{C}_{m-1}^q A^{(q)} > 0.$$

En définitive la matrice $(\mathbf{Id}_n + A)^{m-1}$ est strictement positive.

II. Valeurs propres de matrices positives irréductibles

1. Notons $\Delta=\{\ x\in\mathbf{R}^n\setminus\{0\}\mid x\geq 0\ \}.$ Si $\alpha>0$ et $x\in\Delta,$ on a $r(\alpha x)=r(x).$ En effet

$$r(\alpha x) = \min_{\alpha x_i \neq 0} \frac{\sum_{j=1}^n a_{ij}(\alpha x_j)}{\alpha x_i} = \min_{x_i \neq 0} \frac{\sum_{j=1}^n a_{ij}(x_j)}{x_i} = r(x).$$

Donc, $\forall x \in \Delta$, $r(x) = r\left(\frac{x}{\|x\|}\right)$ et $\sup_{x \in \Delta} r(x) = \sup_{x \in M} r(x)$. Comme $N = (\mathbf{Id}_n + A)^{n-1}(M) \subset \{ x \in \mathbf{R}^n \setminus \{0\} \mid x \geq 0 \} = \Delta$, nous avons directement

$$\sup_{x \in N} r(x) \le \sup_{x \in \Delta} r(x) = \sup_{x \in M} r(x) \tag{1}$$

Soit $x \in M$ et $r \ge 0$ tel que $rx \le Ax$, puisque $(\mathbf{Id}_n + A)^{n-1} > 0$ on a $(\mathbf{Id}_n + A)^{n-1}(rx) \le (\mathbf{Id}_n + A)^{n-1}(Ax)$ ou encore $r(\mathbf{Id}_n + A)^{n-1}x) \le A\left((\mathbf{Id}_n + A)^{n-1}x\right)$ car A et $(\mathbf{Id}_n + A)^{n-1}$ commutent. Si on pose $y = (\mathbf{Id}_n + A)^{n-1}x$, alors $ry \le Ay$ et par conséquent $r(x) \le r(y) \le \sup_{x \in N} r(x)$. Ceci prouve que $\sup_{x \in M} r(x) \le \sup_{x \in N} r(x)$.

En tenant compte de l'inégalité 1, on a

$$\sup_{x \in \Delta} r(x) = \sup_{x \in M} r(x) = \sup_{x \in N} r(x).$$

2. Les formes linéaires $x \mapsto x_i$ et $x \mapsto (Ax)_i$ sont continues pour tout $i \in [1, n]$, donc les applications $\varphi_i : x \mapsto \frac{(Ax)_i}{x_i}$ sont continues sur N. D'où la continuité de $r = \min_{i \in [1, n]} (\varphi_i)$.

M est un fermé borné de \mathbb{R}^n , donc compact. N est l'image par l'application continue $(\mathbf{Id}_n + A)^{n-1}$ (linéaire en dimension finie) du compact M, donc N est un compact de \mathbb{R}^n .

Par continuité de l'application r et la compacité de N, il existe $z \in N$ tel que $r(z) = \max_{y \in N} r(y) := \rho$. D'autre part, il existe $x \in M$ tel que $z = (\mathbf{Id}_n + A)^{n-1}x$. On sait que $z = (\mathbf{Id}_n + A)^{n-1}x > 0$ et comme A est positive Az > 0. En effet, notons y = Az, si l'on avait $(Az)_i = 0$, la i-ème ligne de A serait nulle. Les matrice A^j , pour $j \geq 1$, auraient alors également leur i-ème ligne nulle et

$$(\mathbf{Id}_n + A)^{n-1} = I_n + \sum_{j=1}^{n-1} \mathcal{C}_{j=1}^{n-1} A^j$$

ne serait pas strictement positive. On en déduit que Ay est strictement positif, puis $\rho=r(z)=\min_{i\in [\![1,n]\!]}\frac{(Az)_i}{z_i}>0.$

3. Supposons que $\xi = Az - \rho z$ est non nul. On sait que $\xi \geq 0$. Comme $(\mathbf{Id}_n + A)^{n-1}$ est strictement positive, alors $(\mathbf{Id}_n + A)^{n-1}\xi$ est strictement positif. De la relation

$$(\mathbf{Id}_n + A)^{n-1}Az = \rho(\mathbf{Id}_n + A)^{n-1}z + (\mathbf{Id}_n + A)^{n-1}\xi$$

on déduit donc la relation suivante :

$$(\mathbf{Id}_n + A)^{n-1}Az > \rho(\mathbf{Id}_n + A)^{n-1}z$$

Posons $z'=(\mathbf{Id}_n+A)^{n-1}z$. De la relation précédente il résulte que $Az'>\rho z'$, on peut donc trouver $\varepsilon>0$ tel que $Az'\geq (\rho+\varepsilon)z'$ ce qui contredit la maximalité de $r(z)=\rho$. Donc $\xi=0$ et on a $Az=\rho z$. ρ est donc bien une valeur propre de A et z un vecteur propre associé à ρ .

Montrons maintenant que z > 0. On a :

$$(\mathbf{Id}_n + A)^{n-1}Az = \rho(\mathbf{Id}_n + A)^{n-1}z = \rho(\mathbf{Id}_n + A)^{n-2}(\mathbf{Id}_n + A)z = \rho(1 + \rho)(\mathbf{Id}_n + A)^{n-2}z.$$

En raisonnant par récurrence, on obtient

$$A(\mathbf{Id}_n + A)^{n-1}z = \rho(1+\rho)^{n-1}z.$$

z étant positif, non nul, $(\mathbf{Id}_n + A)^{n-1}z$ est strictement positif ainsi que $A(\mathbf{Id}_n + A)^{n-1}z$. Mais pour que $\rho(1+\rho)^{n-1}z$ soit strictement positif il est nécessaire que z soit strictement positif.

4. Soit y un vecteur propre associé à la valeur propre α . De l'égalité $Ay = \alpha y$, on a $\alpha y_i = \sum_{j=1}^n a_{ij} y_j$ pour tout $i \in [\![1,n]\!]$. D'où

$$\forall i \in [1, n], \ |\alpha||y_i| \le \sum_{j=1}^n a_{ij}|y_j|$$

On a donc y^+ est positif et $|\alpha|y^+ \le Ay^+$, c'est-à-dire $Ay^+ - |\alpha|y^+ \in \Delta$. Par définition de $r(y^+)$ et de ρ on a :

$$|\alpha| \le r(y^+) \le \rho.$$

5. Supposons $\alpha=\rho$, on a donc $\rho y^+ \leq Ay^+$. D'après ce qui précède $\rho y^+ = Ay^+$ et donc y^+ est strictement positif ce qui implique nécessairement que les coordonnées de y sont toutes non nulles. Soit x et y deux vecteurs de \mathbf{C}^n vecteurs propres de A associés à ρ . D'après ce qui précède, on a $x^+>0$ et $y^+>0$. Soit $z=y-\frac{y_1}{x_1}x=(z_1,z_2,...,z_n)$. On a $z_1=0$ et $Az=\rho z$. Si $z\neq 0$, alors $|z|=z^+>0$. Mais on n'a pas $z^+>0$ car $z_1=0$. Donc z=0, c'est-à-dire $y=\lambda x$ avec $\lambda=\frac{y_1}{x_1}$. Cela montre que dim $\ker(A-\rho \mathbf{Id}_n)\leq 1$, et comme ρ est une valeur propre, alors $\dim\ker(A-\rho \mathbf{Id}_n)\geq 1$, d'où

$$\dim \ker(A - \rho \mathbf{Id}_n) = 1$$

6. D'après la question précédente le sous-espace propre relatif à ρ est de dimension 1, il en résulte que $\rho \mathbf{Id}_n - A$ est de rang n-1 et que par suite il y a au moins un co-facteur non nul, ce qui montre que $B(\rho) \neq 0$. De plus on sait que

$$(\lambda \mathbf{Id}_n - A)^t B(\lambda) = \det(\lambda \mathbf{Id}_n - A) \mathbf{Id}_n.$$

En particulier $(\rho \mathbf{Id}_n - A)^t B(\rho) = 0$, ce qui montre que les colonnes non nulles de $^t B(\rho)$, c'est-à-dire les lignes de $B(\rho)$, sont des vecteurs propres de A relatives à ρ et par suite que ces lignes non nulles sont toutes multiples de l'une d'entre elles, d'où $rg(B(\rho)) = 1$.

7. D'après la question précédente, les lignes non nulles de $B(\rho)$ sont des vecteurs propres associés à ρ , donc elles ont toutes leurs composantes non nulles et de même signe.

Mais on a aussi ${}^t\!B(\rho)(\rho \mathbf{Id}_n - A) = 0$, soit en transposant $(\rho \mathbf{Id}_n - {}^t\!A)B(\rho) = 0$. Or ${}^t\!A$ est aussi une matrice positive irréductible puisque $({}^t\!A + \mathbf{Id}_n)^{n-1} = {}^t\!\left((A + \mathbf{Id}_n)^{n-1}\right) > 0$. Le raisonnement précédent appliqué à ${}^t\!A$ permet ainsi de montrer que les colonnes non nulles de $B(\rho)$ ont tous leurs éléments non nuls et de même signe.

Finalement on en déduit facilement que $B(\rho)$ a tous ses éléments non nuls et de même signe. En effet soient $b_{i,j}(\rho)$ et $b_{k,l}(\rho)$ deux éléments quelconques de $B(\rho)$. Si $b_{i,j}(\rho)=0$ toute sa ligne est nulle, donc $b_{i,l}(\rho)=0$, par suite toute la colonne l est nulle et ainsi $b_{k,l}(\rho)=0$. On en déduit que $B(\rho)=0$, ce qui est exclu. D'autre part le signe de $b_{i,j}(\rho)$ est celui de $b_{i,l}(\rho)$ et finalement celui de $b_{k,l}(\rho)$. Tous les éléments de $B(\rho)$ sont bien non nuls et de même signe.

8. On a, pour tout $\lambda \in \mathbf{R}$, ${}^tB(\lambda)(\lambda \mathbf{Id}_n - A) = \chi_A(\lambda)I_n$. Par dérivation, on obtient :

$$\frac{\mathrm{d}^t B}{\mathrm{d}\lambda}(\lambda)(\lambda \mathbf{Id}_n - A) + {}^t B(\lambda) = \frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\lambda) \mathbf{Id}_n.$$

En particulier $\frac{\mathrm{d}^t B}{\mathrm{d}\lambda}(\rho)(\rho \mathbf{Id}_n - A) + {}^t B(\rho) = \frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\rho) \mathbf{Id}_n$ ce qui implique, pour x un vecteur extrémal, ${}^t B(\rho) x = \frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\rho) x$. Si $\frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\rho) = 0$ on obtient , pour tout $i \in [1, n]$, $\sum_{j=1}^n b_{ji}(\rho) x_j = 0$ ce qui est absurde puisque les x_i sont

strictement positifs et les coefficients de $B(\rho)$ sont non nuls et de même signe. Ceci montre que $\frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\rho)\neq 0$ et par conséquent ρ est valeur propre simple de A.

Autre méthode : On a $\frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\lambda) = \sum_{i=1}^n b_{i,i}(\lambda) = \mathrm{Tr}(B(\lambda))$. En effet désignons par $A_i(\lambda)$ la i-ème colonne de la matrice $\lambda \mathrm{Id}_n - A$.

On a:

$$\frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\lambda) = \frac{d}{d\lambda}\det(A_1(\lambda), A_2(\lambda), \dots, A_n(\lambda)) = \sum_{i=1}^n \det(A_1(\lambda), A_2(\lambda), \dots, A_i'(\lambda), \dots, A_n(\lambda)).$$

Mais $A_i'(\lambda)$ a tous ses éléments nuls sauf le i-ème qui est égal à 1. Le résultat s'ensuit immédiatement. On a donc $\frac{\mathrm{d}\chi_A}{\mathrm{d}\lambda}(\rho) \neq 0$ puisque tous les éléments de $B(\rho)$ sont non nuls et de même signe. Ceci montre bien que ρ est valeur propre simple de A.

III- "Réduction" des matrices positives irréductibles

1. (a) Soit y un vecteur propre associé à la valeur propre γ . L'égalité $Cy = \gamma y$ donne :

$$\forall i \in [1, n], \ \gamma y_i = \sum_{j=1}^n c_{ij} y_j$$

$$\forall i \in [1, n], |\gamma y_i| \le \sum_{j=1}^n |c_{ij}| |y_j| \le \sum_{j=1}^n a_{ij} |y_j|$$

car par hypothèse $|C|=C^+$ est inférieur ou égal à A. Posons $y^+=|y|$. On a donc $y^+\geq 0$, non nul et $|\gamma|y^+\leq Ay^+$. Par définition de $r(y^+)$ et de ρ , on a :

$$|\gamma| \le r(y^+) \le \rho.$$

(b) Supposons $|\gamma| = \rho$. On a donc $Ay^+ \ge \rho y^+$, y^+ est extrémal et d'après ce qui précède on a $Ay^+ = \rho y^+$. D'où :

$$\forall i \in [1, n], \ \rho |y_i| = |\gamma| |y_i| = \sum_{j=1}^n a_{ij} |y_j|$$
 (2)

soit

$$\forall i \in [1, n], |\gamma y_i| \le \sum_{j=1}^n |c_{ij}| |y_j| \le \sum_{j=1}^n a_{ij} |y_j|$$

d'après la relation (2) ci-dessus. Ce qui entraîne

$$\forall i \in [1, n], \sum_{i=1}^{n} (a_{ij} - |c_{ij}|)|y_j| = 0.$$

Ceci est équivalent à $C^+y^+ = Ay^+$. De plus, d'après ce qui précède y^+ , étant extrémal, est strictement positif, $|y_j|$ est strictement positif. Donc on a $\forall i, j, a_{ij} = |c_{ij}|$. La matrice A est égale à C^+ .

(c) Les composantes de y sont non nuls, on pose donc $y_i = e^{i\psi_i}|y_i|$ pour tout $i \in [\![1,n]\!]$ où les ψ_i sont des réels. On a donc $y = Dy^+$ où $D = \mathrm{diag}\left(e^{i\psi_1},e^{i\psi_2},...,e^{i\psi_n}\right)$.

Soit y un vecteur propre relatif à γ . On a vu ci-dessus (cf. (1)) que |y| était un vecteur extrémal et donc un vecteur propre relatif à γ . Comme $Cy=\gamma y$ et $\gamma=\rho e^{i\phi}$ on a

$$CDy^{+} = \gamma Dy^{+} = \rho e^{i\phi} Dy^{+} = e^{i\phi} DAy^{+}.$$

ou encore

$$D^{-1}CDy^+ = e^{i\phi}Ay^+$$

Mais l'égalité $e^{-i\phi}D^{-1}CDy^+=Ay^+$ entraı̂ne $e^{-i\phi}D^{-1}CD=A$. En effet, posons $W=e^{-i\phi}D^{-1}CD$. On voit immédiatement que $\forall i,j, \ |w_{ij}|=|c_{ij}|=a_{ij}$. En écrivant l'égalité $Wy^+=Ay^+$ pour la ligne i

$$\sum_{j=1}^{n} w_{ij} y_j^+ = \sum_{j=1}^{n} a_{ij} y_j^+$$

et en tenant compte de $|w_{ij}| = a_{ij}$ et $y^+ > 0$ on obtient

$$e^{-i\phi}D^{-1}CD = A.$$

D'où:

$$C = e^{i\phi} DAD^{-1}$$

- (d) Le même raisonnement avec $\gamma = \rho e^{i\phi_k}$, $0 \le k \le h-1$, et C=A.
- 2. Soit $k \in [1, h-1]$. On a $A = e^{i\phi_k}D_kAD_k^{-1}$ et A et $D_kAD_k^{-1}$ sont semblables, donc elles ont le même polynôme caractéristique, d'où pour tout $\lambda \in \mathbf{C}$,

$$\chi_{A}(\lambda) = \chi_{D_{k}AD_{k}^{-1}}(\lambda) = \det(\lambda I_{n} - D_{k}AD_{k}^{-1}) = \det(\lambda I_{n} - e^{-i\phi_{k}}A) = e^{-ni\phi_{k}}\det(\lambda e^{i\phi_{k}} - A) = e^{-ni\phi_{k}}\chi_{A}(\lambda e^{i\phi_{k}}).$$

En particulier, $\chi_A(\lambda) = e^{-ni\phi_k}\chi_A(\lambda e^{i\phi_k})$. Donc ρ et $\lambda_k = \rho e^{i\phi_k}$ ont même ordre de multiplicité, en particulier les λ_k sont des valeurs propres simples.

Pour k fixé, l'équation $A = e^{i\phi_k}D_kAD_k^{-1}$ reste vrai si D_k est remplacé par aD_k pour tout $a \in \mathbb{C}^* \setminus \{0\}$. En multipliant par la coefficient d'indice (1,1) de D_k^{-1} , on peut supposer que $(D_k)_{11} = 1$.

3. En appliquant le résultat de la question 1. ci-dessus, on a $A=e^{i\phi_k}D_kAD_k^{-1}$ et $A=e^{i\phi_j}D_jAD_j^{-1}$ ce qui entraine $e^{i\phi_k}D_kAD_k^{-1}=e^{i\phi_j}D_jAD_j^{-1}$ soit

$$A = e^{i(\phi_j - \phi_k)} D_j D_k^{-1} A D_k D_j^{-1}$$

et

$$A = e^{i(\phi_j + \phi_k)} D_j D_k A D_k^{-1} D_j^{-1}.$$

4. Notons $G = \left\{ e^{i\phi_0} = 1, e^{i\phi_1}, ..., e^{i\phi_{h-1}} \right\} \subset \mathbb{U} = \left\{ z \in \mathbb{C} \mid |z| = 1 \right\}$. D'après la question ci-dessus G est stable par multiplication, et puisque $(\mathbb{U}, *)$ est un groupe abélien, alors (G, *) est un sous-groupe abélien. Donc (G, *) est un groupe multiplicatif et abélien.

De plus, on peut vérifier que l'application $\phi_k \mapsto D_k$ est bien définie et définit un morphisme de groupes.

5. Notons $\Phi = \{\phi_0, \phi_1, ..., \phi_{h-1}\}$. Montrons aussi $\phi_1 + \phi_1 = \phi_2$, en effet, on a $0 < \phi_1 + \phi_1 - \phi_2 < \phi_1$ et donc $\phi_1 + \phi_1 - \phi_2 \notin \Phi$ ce qui est absurde. D'où $\phi_2 = \phi_1 + \phi_1 = 2\phi_1$ puis par récurrence $\phi_k = k\phi_1$ pour tout k et $h\phi_1 = 2\pi$. Donc $\phi_k = \frac{2\pi k}{h}$, nous pouvons écrire donc $\lambda_k = \rho w^k$ où $w = e^{\frac{2i\pi}{h}}$ le premier racine de l'unité de degré h

 $\begin{array}{l} h. \\ \text{Notons } f \text{ l'isomorphisme qui existe entre } \left\{ \left. e^{i\phi_k} \; \right| \; 0 \leq k \leq h-1 \; \right\} = \left\{ \left. \left(e^{\frac{2i\pi}{k}} \right)^k \; \right| \; 0 \leq k \leq h-1 \; \right\} \text{ et } \left\{ \left. D_0, D_1, ..., D_{h-1} \; \right\}, \\ \text{alors } D_k = f(e^{i\phi_k}) = f\left(e^{\frac{2i\pi}{h}} \right)^k = D_1^k. \end{array}$

6. En tenant compte du fait que $\lambda_k = \rho w^k$, nous avons

$$A = wD_1AD_1^{-1} = w^2D_1^2AD_1^{-2} = \dots = w^{h-1}D_1^{h-1}AD_1^{-(h-1)} = D_1^hAD_1^{-h}$$

La équation implique

$$A_{ij} = (D_1^h)_{ii} A_{ij} (D_1^{-h})_{jj}$$

pour tous i et j de $\{1,2,...,n\}$. Comme A est strictement positive, alors $\left(D_1^h\right)_{ii} = \left(D_1^h\right)_{jj}$ et comme $(D_1)_{11} = 1$, alors $D_1^h = I_n$. Ainsi, tous les éléments diagonaux de D_1 sont les racines h-ème de l'unité. Il existe donc une matrice de permutation S telle que

$$\Delta = {}^{t}SD_{1}S = S^{-1}D_{1}S = \begin{pmatrix} \beta_{1}I_{n_{1}} & 0 & \dots & 0 \\ 0 & \beta_{2}I_{n_{2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \beta_{s}I_{n_{s}} \end{pmatrix}$$

où les $\beta_k = e^{\frac{2i\pi}{h}m_k}$, $0 = m_1 < m_2 < \dots < m_s < h$ ($m_1 = 0$ car le premier coefficient de D_1 est égal à 1) sont des racines h-ème de l'unité et où les n_i sont des entiers naturels de somme égale à n.

7. En posant de même $B=S^{-1}AS$ on trouve $\Delta^{-1}B\Delta=\mathrm{e}^{\frac{2i\pi}{\hbar}}B$. Partitionnons B suivant la même forme que Δ :

$$B = \begin{pmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,s} \\ B_{2,1} & B_{2,2} & \cdots & B_{2,s} \\ \vdots & \vdots & \ddots & \vdots \\ B_{s,1} & B_{s,2} & \cdots & B_{s,s} \end{pmatrix}.$$

Nous allons montrer par récurrence que

$$\forall k \in \{1, 2, \dots, s\}, \ m_k = k - 1.$$

La propriété est vraie pour k = 1. Supposons qu'elle le soit jusque k < s. L'égalité

$$\Delta^{-1}B\Delta = e^{\frac{2i\pi}{h}}B$$

donne en ce qui concerne la ligne de blocs d'inde k:

$$\forall l \in \{1, 2, \dots, s\}, \ e^{\frac{2i\pi}{h}} B_{k,l} = e^{\frac{2i\pi}{h}(m_l - m_k)} B_{k,l}.$$

Comme les B_{kl} ne sont pas tous nuls puisque la matrice est irréductible il existe $l \in \{1, 2, ..., s\}$ et $p \in \mathbf{Z}$ tels que $m_l - m_k = 1 + ph$, soit $m_l = k + ph$. Mais comme $k \le s \le h$ et $0 \le m_l < h$ on en déduit p = 0 par élimination des cas p < 0 et p > 0.

Donc $m_l = k = (k-1) + 1 = m_k + 1$. Ceci ne peut se réaliser que si m_l est le successeur immédiat de m_k dans la suite croissante des m_j . Donc l = k + 1 et $m_{k+1} = m_l = k$, ce qui achève la récurrence.

D'autre part $e^{\frac{2i\pi}{h}}B_{k,l}=e^{\frac{2i\pi}{h}(l-k)}B_{k,l}$ montre que si l-k n'est pas congru à 1 modulo h on a $B_{k,l}=0$. Il reste à prouver que s=h. Or en considérant la dernière ligne de blocs on ne peut avoir $n_l=l-1=s+ph$ que si p=-1. En effet si $p\geq 0$ on a l>s, ce qui est impossible et si $p<-1, n_{l-1}<0$ également exclu. Donc l-1=s-h soit l=s-h+1. Mais 0< l=s-h+1 et donc s>h-1 soit $s\geq h$. Comme on a évidemment $s\leq h$ on a s=h, d'où la forme de B:

$$S^{-1}AS = B = \begin{pmatrix} 0 & A_1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & A_{h-1} \\ A_h & 0 & \cdots & 0 & 0 \end{pmatrix}$$

où S est une matrice de permutation et $A_i = B_{i,i+1}$ pour $1 \le i \le h-1$ et $A_h = B_{h,1}$.

• • • • • • • • •